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The mixing of ground water and sea water in 
permeable subsoils 

By G. F. CARRIER 
Pierce Hall, Harvard University 

(Received 31 March 1958) 

SUMMARY 
The subterranean mixing in permeable media of sea water 

and ground water is studied. The model for this mixing process 
which was suggested by C, K. Wentworth is adopted, but is soon 
discarded in favour of a more tractable formulation whose 
equivalence to the original model is established. The analysis 
is carried to the point where the determination of the salinity 
distribution of the ground water in a given subsoil requires only 
the solution of an elementary linear ordinary differential equation. 

1.  INTRODUCTION 
The distribution of water in permeable islands, e.g. the Hawaiian group, 

has the general configuration shown in figure 1. The depth of the lens-shaped 
region of fresh water (usually called the Guyben-Hertzberg lens) is nearly 

Y 

Figure 1. The distribution of ground water in a permeable island. The permeable 
material lies below AOB; the fresh water lies in the region between EO and 
DO;  the salt water lies below DOB. A description of the salinity distribution 
near DO is the objective of this investigation, The arrows indicate qualita- 
tively the velocity distribution associated with the ' steady ' rainfall and 
run-off to the sea as described in 0 4. 
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proportional to the one-half power of the distance from shore ; its size is 
determined by the net water supply. However, the configuration is not 
stationary since there is an oscillatory vertical motion of the fluid in response 
to the tidal pressure excitation along OB. This motion implies, in the 
neighbourhood of the interface between the fresh water and the salt water, 
an invasion by the salt water of the cellular medium assigned to the fresh 
water, and vice versa ; this leads to  a dispersion of the material, so that the 
interface becomes diffuse. The purpose of this paper is to investigate 
quantitatively the structure of the transition zone separating the salt water 
from the fresh water. 

In  5 2 a physical model for the mixing process (due to C. K. Wentworth) 
is introduced; a continuum model which is thought to be equivalent is 
also suggested. The equivalence is established in § 3, by comparing solutions 
to certain preliminary problems. In 3 4 a more realistic continuum formula- 
tion of the problem is given, and a solution is obtained ; from this a more 
convenient equivalent mathematical model is established. In  3 5 this last 
model is used to solve what I believe to be a satisfactory formulation of the 
problem of the structure of the mixing zone. 

2. THE MIXING PROCESS 

We shall adopt a mechanism due to C. K. Wentworth to explain the 
salinity distributions associated with the problems of interest. Imagine 
the porous structure to be a homogeneous array of communicating cells; 
a one-dimensional array like that of figure 2 suffices for our present purpose. 
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Figure 2. One-dimensional array of cells. 

Denote by Sm,n the salinity of the fluid in cell n at time t,, and define a 
velocity W(t )  = M/pAf, where M is the upward mass flow of fluid per 
unit time in the array of figure 2, A the cross-sectional area of the array, 
p the fluid density, and f the porosity (i.e. the fraction of the volume that 
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can be occupied by fluid). According to this definition, W is the speed 
of a free surface advancing through the porous medium ahead of such a 
mass flow M .  Sm,n may be taken to 
be either the volume fraction or the mass fraction of salt in the solution. 

During the time interval t ,  to tm+,, a volume of fluid (t,+l-trn)WA 
is convected from cells n - 1 into cells n. We assume this process takes 
place without diffusion and that all the fluid in a cell n mixes thoroughly 
at time t,+l. We choose the time interval sufficiently small so that no 
fluid from a cell n-  1 passes into a cell n+ 1, i.e. t,,+l-t, < A/W. 

Assuming that W is positive in the time t,+l - t,, cell n loses salinity 
Sm,n( 1 - a )  and gains salinity Sm,n-l( 1 - a) ,  so that 

where 1 - a = I WI (t,,, - t,)/A. 

by Srn,n+l. 
Sm,?, must be expressed as 

The cell height is denoted by A. 

Srn+l,n-Sm,n = (1 -a)[sm,n-1-Sm,nl, (2.1) 

When W is negative during the time interval, Snt,,_, must be replaced 
To include both cases, the difference equation governing the 

Sm+l ,n -Sm,n  = “3 [(w+ I W O S ~ ~ , ~ - ~ - ~ ~ W I S ~ ~ , ~ + ( I W I -  ~ s m , n + 1 1 -  I w1 
(2.2) 

Another model which has the same plausibility and which gives the same 
prediction, as we shall see in $ 3 ,  can be constructed by the following 
conventional limiting process. Divide each side of (2.2) by t,+l - t,, 
and let this difference tend to zero. We obtain 

S 3 )  = ((lWl+ W)Sn-,+(I~I- W)Sn+,-2lWlS,)/2A. (2.3) 
Here S,,(t) denotes the salinity in cell n at time t ,  and the prime denotes 
differentiation with regard to t. The corresponding formal limiting process 
wherein A + 0 would give a model in which the dispersive process had 
been eliminated. Consequently, we shall merely postulate a continuum 
model which ‘ resembles ’ (2.3) and establish its ‘ equivalence ’ with (2.3) 
by demonstrating that its interesting consequences are the same as those 
of (2.3). This continuum model, which is found by associating 
Sn+l - 2Sn + Sn-l with ABSyy, Sn+l - SnWl with ZAS,, and nA with y ,  is 

S, = I WlAS,,- WS,. (2.4) 

Here S ( t , y )  is the salinity at time t and coordinate y ,  and the subscripts t 
and y denote partial differentiation with regard to those variables. 
Equations (2.2), (2.3) and (2.4) are each solved in § 3  for a given group of 
problems, and the equivalence of their predictions is established. 

For a subsoil of 
complicated geometry this parameter must be determined experimentally, 
but for some special geometries we can deduce certain information about 
its value. If the cell array is composed, as in figure 3, of a tube with arbitrary 
vertical subdivisions, and if the time interval we adopt is the maximum 
possible for (2.2) t o  be valid, then a = i, since the flow at the very low 

We here briefly discuss restrictions on the size of a. 



482 G. F. Currier 

... .., 

. .  .. 

. . . . . . , 

. . . . . . . 

.... ... . . 

........... 

_,........ 

.. . ..... 

... . ....., 

'"~'"'' 

Reynolds numbers experienced in these phenomena would be paraboloidal 
in profile. Also, the volume of a paraboloid between the vertex and a section 
normal to the axis is one-half of that of the enclosing cylinder. If we use 
a shorter time interval, a is larger than 4. If the cells are similar to those 
of figure 2, the flow from cell n - 1 is likely to penetrate cell n in a 
comparatively slender filament, so again a will be larger than +. On the 
basis of such observations, it appears reasonable to expect that a > 1. '. 
This is not a crucial point, however, since the determination of the effective 
cell size will be at least as important in determining the 'diffusion rate' 
.of the phenomena. 
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Figure 3. Tube with conceptual subdivision. 

3. THE SOLUTIONS OF THE DIFFUSION EQUATIONS 

The treatment of equation (22) with - 00 < n < co, and with So,n 
given, is most readily carried out when we introduce a generating function 

where the expansion is a Laurent expansion. T o  solve (2.2) we multiply 
it by xn and sum over n. The result is . 

g,+,(x) = [ l - ( l - u ) ( l - z ) ' ~ ' + ~ - ( l - u ) ( l - z - ~ )  ' - 7: , r Y g & ) .  
21 WI 

(3.1) 
If m, is the number of time intervals during which W > 0, and m2 = m - m,, 
the solution of (3.1) is 

g,(z) = g o ( ~ ) [ l - ( l - - ~ ) ( l - ~ ) ] ~ ~ [ l - ( l - ~ ) ( l - ~ - ~ ) ] ~ ~ .  (3.2) 
Since Sm,m is the coefficient of the Laurent expansion of gm(x) ,  
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The contour encloses the origin and passes to the left of the point z = 1. 
For all the problems of interest here, m 9 1 ; thus, an asymptotic evaluation 
of the integral (3.3) provides all the useful information. The solution 
depends on the initial conditions, i.e. on the values of No generality 
is lost if we take the initial distribution of salinity to be the step function 
which is unity for n > 0 and zero for n < 0, i.e. go(.) = (1 -z)-l. 

With g&) = (1 -z)--l, 

+m,iog[i - (1 -a)(i -2-911 de, (3 .4)  

where z(8) = eie, and the path is indented to pass above the origin in the 
&plane. The saddle point of the exponent in (3.4) lies at 

8 = 8, - - i [ n - ( l - a ) ( m , - m , ) ] / a ( l - a ) ( m , + m , )  
when 

n-(l-a)(ml-mz) < m. 
Since O0 << 1 for such n, the second derivative of the exponent is closely 
approximated by - a( 1 - a)m. Thus, the integral which asymptotically 
approximates (3.4) is, with h = a(1 -u )m,  

m 

sin,rl - - j reo + ( e  - 0~)]-1 exp{gh[eg - (0 - 60)z] )  d(e  - 0,) 2n - - m  

= 4 erfc{ - [n - ( 1  - a)(ml - m,)] / [2a(  1 - a)(ml + m,)]1/2} 

= 4 erfc{ - [ y  - Jl W(T)  d ~ ] / [ 2 A  f I W ( T ) ~  d ~ ] ~ ’ ~ }  . ( 3 . 5 )  
0 

The final equality is obtained when we use the coordinate definitions which 
were introduced with (2.4).  This result states that the mid-point of the 
transition zone translates with velocity W(t),  and that its breadth is 

proportional to [ 1; W(T)  d ~ ] ’ ” .  

The generating function G ( t , z )  for the S , ( t )  in (2.3) has the form 

G ( t , z )  = 2 S,(t)zn = G(O,x)exp{-a(l-z)-fl(l-z-l)}, (3 .6)  

where a = ( 2 A ) - l j  ( 1  WI + W )  dt and p = (2A)-l  f ( 1  WI - W )  dt.  From 

this, the integral representation for S,(t)  is found to be precisely the limiting 
form of the right side of (3 .4)  when a -+ 1,  i.e. 

m 

- - m  

1 

0 0 

A discussion of the saddle point location and the second derivative of 
the exponent for n g a + f l  shows that (3 .7)  leads again to (3.5).  For large n, 
this could not be because the signal speed of the model of (2.2) is finite and 
that of (2 .6)  is ‘ not. 
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We now denote the solution of (2.4) by S(t,y) and its Fourier transform 
by u ( t , ~ ) ,  i.e. 

U ( t , T )  = jm S(t,y)exp[-iryI dY. (3.8) 

(3.9) 

- 0 2  

By the use of conventional techniques on (2.4) we obtain 

The solution, with S(0,y) equal to the unit step function, is 

where u and 

ut(4 r )  = [ -iwq - I wlAqzlo(t, 7). 

o = u(0, q)exp( - (u + P)Azqz - i (a  - P)Aq}, 
are defined following (3 .6) ,  and u(0,q) = (iq)-l .  Thus, 

1 
27r - m  

S(t,y) = -im (iq)-1exp[-(a+/3)A2~2-i(u-/3)qA+iqy] dq. (3.10) 

This time equation (3.5) rigorously defines the function implied by (3.10). 
The foregoing comparisons could be extended to more general initial 

considerations, but no further justification for the use of the continuum 
model seems necessary. 

4. MIXING WITH A SPACIALLY VARYING VELOCITY FIELD 

The Guyben-Hertzberg lens of fresh water is maintained in the presence 
of rainfall and the accompanying drainage of fluid to the sea. Thus, the 
velocity distribution above the salt-fresh water interface must resemble 
that of figure 1. Because of the diffuse character of the interface, some of 
the run-off must be salty, whereas the vertical intake is fresh water. If there 
were no motion other than the tidal fluctuations below the interface, the 
concentration at any point (for any initial solute distribution in dynamic 
equilibrium) would diminish with time. However, such a diminished 
concentration could not continue to be a hydrodynamic equilibrium 
configuration, and more of the denser salt water would have to be supplied 
by the sea to restore equilibrium. Thus, the only acceptable velocity 
distribution both above and below the interface is depicted in figure 1. 
It is easier to generalize the diffusion equation (2.4) to deal with an appro- 
priate one-space variable problem and then tackle the problem with the 
flow field of figure 1, than to deal immediately with the latter problem. 
The appropriate one-dimensional problem is one in which the vertical 
velocity is given by 

The corresponding physical situation is one in which this velocity distribution 
occurs in a vertical column of cells and a flux of fluid emerges laterally from 
these cells with a mass conserving distribution. With this velocity 
distribution, (2.4) becomes 

Because of the variable coefficients and the non-analytic character of the 
coefficient of Sy y, rigorous solutions to this differential equation would 
be very difficult to obtain. We must simplify it, and the motivation for the 

w =  vcoswt-€y. (4.1) 

Si = (EY - v cos wt)S ,  + ICY - u cos OJ~~AS,,. ( 4 4  



Mixing of ground water and sea water in permeable subsoils 485 

simplification can be better appreciated if we first anticipate some physical 
features of the phenomenon. With the cy term absent the solution of (4.1) 
is given by (3.5) and is 

S ( t , y )  = + erfc{ - [y - (v/w)sinwt]/[4tr-l+ 2P(t)]1’2} (4.3) 

where P(t )  has period w and average zero. Henr .S has an error function 
distribution with a breadth proportional to t1i2 which translates at speed 
v cos wt and about which fluctuations occur at frequency w .  We can expect 
that the principal effect of the ~y velocity contribution will be to squeeze 
the mixing zone into a narrower configuration, and that the other features 
will remain qualitatively unaltered. 

In  order to simplify (4.2), we note that the term I c y - v c o s ~ t l  is, for 
all ~y < v, very well approximated by jv cos wt[ ,  except when t is very close 
to +(2n + 1 ) ~ .  Since almost no mixing occurs during such time intervals, 
the final term of (4.2) can be replaced by A ~ v c o s w t ~ S v v  with negligible 
loss of accuracy. When we introduce the dimensionless quantities r = wt,  
x = y(e/z~A)l’~,  u2 = cA/v, p2 = w2A/cv, equation (4.1) becomes 

PS, = ( u x - c o s T ) S , + ~ ~ ~ O S T ~ S ~ ~ .  (4.4 1 
We also write 4 = x - P-l( 1 + N-2)-1  sin[^ + arctan N-l]  with N = p/u. 
The transformation to f allows for the oscillating translation of the salinity 
distribution. Equation (4.4) becomes 

NS, = [Sg + /COS T / s b g .  (4.5) 
Typical estimates of the parameters are /3 = lo2, u = N = lo4 (hence, 
terms of order N-l in the definition of 4 can be dropped with no important 
loss of accuracy). Since we are primarily interested in the salinity distribu- 
tion after a long time with the boundary conditions S + 1 as 5 + 00, S + 0 
as f - m, we again use the initial condition at t = 0 that S = 0 for 
negative [ and S = 1 for positive [. 

If we define the Fourier transform 

with o = i ~ ,  (4.5) becomes 

NS7 = - (US),+ /COS i-lozS. (4.7) 

u = T-%/N, v = T+.z/N, (4.8) 

(4.9 1 

Furthermore, with x = logo and 

(4.7) can be written 

2NSv + [l - /cos +(% +~)Ie(~--etf /~]S = 0. 

The initial condition at r = 0 becomes S = 1/u when u + v = 0. Equation 
(4.9) is a first-order linear equation which is solved by using an integrating 
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factor. That solution which is consistent with the foregoing initial 
conditions and in which the substitutions (4.8) have been used is 

S(a, T )  = u-1exp[a2/H(~)], (4.10) 
where 

(4.11) 

The function P(7)  is a periodic function whose Fourier series is 

H(7)  = n-1(1 -e--BT/N ) + N-~[P(T) - e-zT’sP(0)]. 

(4.12) 

where +n = arctan(nN). Note that P(T)  < 2 2/(3nn3) < 1. 
Equation (4.10) can be inverted to give S ( ~ , T ) .  

(4.13) 
Recalling that P(T)  < 1 and that a typical value of N is lo4, it is clear 

The result is 

S ( f ,  T) = &(I +erf(+c[H(~)]~/~)).  

that after a large time 
S(5, T )  - &[1 +erf{(i~)l/~()]  

= $[1 +erf{(+r)1’2[x-p-1sin~]}. (4.14) 
It can now be seen that when N is large’ and when only the results for 

large T are wanted, (4.5) can be replaced by one in which the ‘ diffusion 
coefficient’ IcosT1 is replaced by its average value 2/n. Note, however, 
that this asymptotic behaviour is reached only after dimensionless times T 
of the order of N. To the accuracy with which we can now estimate N, 
this may be a few decades. Thus, when a large change in ground water 
usage habits occurs (e.g. irrigation), all the the effects may not be evident 
for several years. Taking advantage of the foregoing, (4.2) is replaced by 

S, = (2/n)vASyy + (EY - v cos wt)Sy. (4.15) 

In the system in which the coordinates are t andy’ = y - (v/w)sin(wt - +), 
this equation becomes 

S, = (2/rr)vASy.,. + EY’S~,. (4.16) 

Finally, for very large times, the solution becomes time independent, and 
S, in (4.16) can be replaced by zero to give 

( ~ / ~ ) V A S ~ , ~ ,  + EY‘S,, = 0. (4.17) 

5 .  A TWO-DIMENSIONAL MODEL FOR MIXING IN 

THE GUYBEN-HERTZBERG LENS 

The results of $ 4  imply that in a one-dimensional array of cells in which 
the fluid velocity distribution is ~y + v cos w t ,  the mixing which occurs is 
equivalent to that which would occur in a fluid of diffusivity 2vA/n which 
moved with the velocity cy relative to a coordinate system translating at 
speed v cos wt. We adopt this result in order to  simplify the analysis of the 
problem in which the salinity depends on the two space variables x and y. 
The actual Guyben-Hertzberg lens has a mixing zone whose thickness 
decreases inland since the tidal response, and hence the effective diffusivity, 
decreases inland. We adopt coordinates such that y = 0 at the (translating) 
nominal interface position; this is essentially the y‘ of $4. The distance 
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inland from the shoreline is -x. Let V(x)cos~t--y~(x)  be the vertical 
velocity distribution; let U ( x )  be the steady horizontal velocity; and let 
u ( x )  be the effective diffusivity ZV(x)A/v. In general V ( x )  will increase 
with increasing x, and conservation of mass requirements imply that 
U ( x )  - E ( X )  = 0. With this notation the two-dimensional generalization 
of (4.17) is 

The solution of this equation under the now familiar boundary conditions, 
S 3 1 as y -+ co, S -+ 0 as y 3 - a, is of the form 

and substitution of this into (5.1) shows that 

For given ~(x) ,  U(x) ,  u(x ) ,  and for a given h(x,) this equation can be integrated 
easily. 

Preliminary experiments on Maui island indicate that the physical 
facts are consistent with our predictions; however, there are too many 
guesses involved in choosing A, E ,  u, V to make any serious claims until 
more extensive measurements yield values for these quantities. 

U(X)S, - +)yS, = u(x)S,,. (5.1) 

S = 4 [ 1 + erf{y/h(x))], 

[h2(x)]’  + (261 U)h2 = 40/ u. 

( 5 4  

(5.3 1 

6.  THE EFFECTS OF MOLECULAR DIFFUSION 

Once fluid has been transported across the passage connecting two cells, 
the new fluid from cell n-  1 and that already in cell n will be thoroughly 
mixed by the diffusion-mixing mechanism supplied by the irregular vortex 
motion in the cell. However, a few estimates are still needed to ascertain 
whether the transport of salt across the connecting passage is contributed 
primarily by convection or by molecular diffusion. To answer this question 
we first note that the effective diffusivity of the model of equation (4.1) is 
2VA/r. (This is implied by the solutions which we have presented.) 

We now turn to  the molecular diffusion process. We imagine the passages 
between cells to be holes of area a2, and assume a < A. The salinity gradient 
near and in the passage will be characterized by the quantity SS/a (6s  is 
S,  - and the total rate of flow of salt per unit time from cell n - 1 
into cell n by diffusion (without convection) is characterized by vaSS, 
where 1’ is the molecular diffusivity. Without a barrier, the salinity gradient 
is of order 8S/A, and the diffusive transport of salt across the area A2 is of 
order vSSA. The latter rate would be predicted by a conventional diffusion 
equation with diffusivity v. The former rate vGSa would be predicted by 
a conventional diffusion equation with diffusivity va/A. We call this latter 
quantity the effective diffusivity, i.e. the diffusion coefficient which must 
be used in the diffusion equation to obtain the proper diffusive transport 
for problems having the cellular geometry. The diffusivity which is 
associated with the mixing mechanism discussed in the preceding sections 
of this paper is 2VAj.r = VA. Thus, the relative effectiveness of these two 
transport mechanisms is given by the ratio va,!VA2. 
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The value of a for a material of known permeability can be estimated 
in the following manner. The energy dissipation rate E per cell (assuming 
two holes to  a cell) is of the order p( VA2/a3)2a3, where p is the fluid viscosity, 
VA2/a2 is the characteristic velocity near the holes and VA2/a3 is the velocity 
gradient near the holes. Furthermore, the definition of the permeability k 
states that Jgradpl = pfV/k, where f is the porosity, and A3Vlgradpl is 
the energy loss rate per cell since the pressure drop across the cell Algradpl 
acts on a fluid area A2 against a velocity V. Equating these two estimates 
of E, we obtain pV2A4a3 = A3V2pf/k or kf-l = a3/A. In the Hawaiian 
volcanic structure, kf-l is of the orddr lop5 cm2; and near the test wells 
on Maui, A can be estimated at 0-5 cm, v = 1 cm2/day, V = 30cm/day. 
Using these figures, the effective molecular diffusivity va/A is approximately 
1/30 cm2/day, whereas 2VA/r = 15. Thus, if the values of the parameters 
involved in any particular problem lie anywhere near the foregoing, the 
molecular diffusivity cannot play a competitive role in the determination 
of the safinity distribution. 

7. CONCLUSION 
In view of the lack of quantitative information regarding cell size and 

detailed velocity fields in permeable islands, we cannot quantitatively 
describe the salinity distribution in particular areas. The observations 
that we do offer are that the discretized model of equation (2.2), the 
continuum model of (2.4) and the ' intermediate ' model of (2.3) all imply 
the same quantitative predictions regarding the structure of the brackish 
zone for which the tidal fluctuations provide the mixing mechanism. The 
more highly simplified models introduced in 8 4 and 6 5 to deal with more 
complicated flow configuration are equally appropriate for the prediction 
of such salinity distributions. It is also clear that the predictions of the 
last of these can be evaluated without difficulty for any given porous medium 
properties and a given velocity field. 

Most of this work was carried out during a visit to the Scripps Institute 
of Oceanography in 1955. The author is indebted to W. H. Munk and 
Doak Cox for suggesting the investigation and for supplying the background 
information. 




